
WRITE WORK FILE

 

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition 

Operand1C S A G  A N P I F B D T L C G  yes no 

Related Statements: DEFINE WORK FILE | READ WORK FILE | CLOSE WORK FILE

Function
The WRITE WORK FILE statement is used to write records to a physical sequential work file. 

On mainframe computers, this statement can only be used in batch mode, or under Com-plete, CMS, TSO and
TIAM. 

It is possible to create a work file in one program or processing loop and to read the same file in a subsequent
independent processing loop or in a subsequent program using the READ WORK FILE statement. 

work-file-number
The work file number (as defined to Natural) to be used. 

VARIABLE
Note:
This option is only available on mainframe computers.

It is possible to write records with different fields to the same work file with different WRITE WORK FILE
statements. In this case, the VARIABLE entry must be specified in all WRITE WORK FILE statements. The records
on the external file will be written in variable format. Natural will write all output files as variable-blocked (unless
you specify a record format and block size in the execution JCL). 

Fields - operand1
With operand1 you specify the fields to be written to the work file. These fields may be database fields, user-defined
variables, and/or fields read from another work file using the READ WORK FILE statement. 

A database array may be referenced with one single range of indices which indicates the occurrences that are to be
written to the work file. Groups from database files may be referenced using the group name. All fields belonging to
that group will be written to the work file individually. 

1Copyright Software AG 2001

WRITE WORK FILEWRITE WORK FILE



Variable Index Range
When writing an array to a work file, you can specify a variable index range for the array. For example: 

WRITE WORK FILE work-file-number VARIABLE #ARRAY (I:J)

External Representation of Fields
Fields written with a WRITE WORK FILE statement are represented in the external file according to their internal
definition. No editing is performed on the field values. 

For fields of format A and B, the number of bytes in the external file is the same as the internal length definition as
defined in the Natural program. No editing is performed and a decimal point is not represented in the value. 

For fields of format N, the number of bytes on the external file is the sum of internal positions before and after the
decimal point. The decimal point is not represented on the external file. 

For fields of format P, the number of bytes on the external file is the sum of positions before and after the decimal
point, plus 1 for the sign, divided by 2, rounded upward to a full byte. 

Note: 
No format conversion is performed for fields that are written to a work file.

Examples of Field Representation:

Field Definition Output Record 

#FIELD1 (A10) 10 bytes 

#FIELD2 (B15) 15 bytes 

#FIELD3 (N1.3) 4 bytes 

#FIELD4 (N0.7) 7 bytes 

#FIELD5 (P1.2) 2 bytes 

#FIELD6 (P6.0) 4 bytes 

Note: 
When the system functions AVER, NAVER, SUM or TOTAL for numeric fields (format N or P) are written to a
work file, the internal length of these fields is increased by one digit (for example, SUM of a field of format P3 is
increased to P4). This has to be taken into consideration when reading the work file.

Handling of large and dynamic variables
The RECORD option is not allowed if any dynamic variables are used. 

The work file types ASCII, ASCII-COMPRESSED, ENTIRECONNECTION, SAG (binary) and TRANSFER
cannot handle dynamic variables and will produce an error. Large variables pose no problem except if the maximum
field/record length is exceeded (field length 255 for ENTIRECONNECTION and TRANSFER, record length 32767
for the others). The work file type PORTABLE stores the field information within the work file so that dynamic
variables are resized during READ if the field size in the record is different from the current size.

Copyright Software AG 20012

WRITE WORK FILEVariable Index Range



Example

   /* EXAMPLE ’WWFEX1’: WRITE WORK FILE
   /***************************************
   DEFINE DATA LOCAL
   1 EMPLOY-VIEW VIEW OF EMPLOYEES
     2 PERSONNEL-ID
     2 NAME
   END-DEFINE
   /***************************************
   FIND EMPLOY-VIEW WITH CITY = ’LONDON’
    WRITE WORK FILE 1
          PERSONNEL-ID
          NAME
   END-FIND
   /***************************************
   END

3Copyright Software AG 2001

ExampleWRITE WORK FILE


	WRITE WORK FILE
	Function
	work-file-number
	VARIABLE
	Fields - operand1
	Variable Index Range
	External Representation of Fields
	Handling of large and dynamic variables
	Example


